
A Study of the Influence of the POWER5 Dynamic Resource Balancing (DRB) on

Optimal Hardware Thread Priorities

Princess C. Trillo, Undergraduate Student,
Mitesh R. Meswani, Ph.D. Student,

Patricia J. Teller, Ph.D., Professor, and
Sarala Arunagiri, Ph.D., Research Specialist

Department of Computer Science, University of Texas at El Paso

Abstract

 Simultaneous Multithreading, often abbreviated SMT, is
a technique for improving the overall efficiency of
superscalar processors with hardware multithreading.
SMT permits a processor to concurrently execute multiple
independent instruction streams every clock cycle,
potentially improving processor throughput. However,
this can introduce contention for shared resources
amongst threads running concurrently in SMT mode. In
order to enable the programmer to control the ratio in
which resources are shared, the IBM POWER5 processor
allows prioritization of one thread over another. The
processor also implements Dynamic Resource Balancing
(DRB) hardware, which throttles back a thread that
monopolizes architectural resources by reducing its
thread priority. Unlike thread priorities, the DRB is not
tunable by software. In this paper, the hardware thread
priorities that give best processor throughput are referred
to as optimal hardware thread priorities.

The research described in this paper answers the
following question: Does the POWER5’s DRB influence
the identification of optimal hardware thread priorities
for a given pair of threads running concurrently in SMT
mode, i.e., a co-schedule? To answer this question we
used a POWER5 simulator and compared cycles per
instruction (CPI) with DRB enabled and DRB disabled
while simulating application runs for application pairs
composed of SPEC CPU2000 and STREAM benchmarks.
Our results show that (1) there was less than 1%
difference between the CPIs of the threads of all co-
schedules except for co-schedules executing a SPEC
floating-point intensive benchmark and a SPEC integer-
intensive benchmark; (2) whether DRB is enabled or
disabled, approximately 40% of co-schedules do not
experience best performance with equal priorities; and
(3) approximately 69% of the co-schedules experienced
best performance at the same priorities with DRB enabled
and DRB disabled. Thus, the enabling or disabling of the
POWER5’s DRB does not have a significant impact on
the identification of a co-schedule’s optimal thread
priorities.

1. Introduction and Background

The disparity between the speeds of memory and
processors has led to reduced processor utilization and
throughput. To address this problem, computer architects
have implemented techniques within the processor
pipeline to take advantage of the inherent parallelism of
applications, called instruction-level parallelism (ILP).
However, processors continued to remain underutilized
[1].

Simultaneous multithreading, often abbreviated SMT, is a
technique used to improve processor utilization. A
processor with SMT interleaves the execution of multiple
instruction streams in the pipeline every clock cycle. This
interleaving allows resources that are left idle by one
thread to be used by another, thus, improving throughput
by taking advantage of parallelism amongst multiple
threads, called thread-level parallelism (TLP). A
superscalar processor with SMT can take advantage of
thread-level and instruction-level parallelism to improve
processor utilization and, thus, throughput. IBM [2] and
Intel [3] have implemented SMT on superscalar
processors.

Hardware threads of an SMT processor share most of the
processor’s resources at cycle-level granularity. In
general, concurrently executing applications (hereinafter
called threads) that do not compete for the same classes of
resources, such as memory, increase processor
throughput. However, throughput drops when the threads
compete aggressively for the same classes of resources.
The prediction of contention for shared resources depends
on the characteristics of the concurrently executing
threads.

To address the issue of reduced throughput due to
resource contention, some SMT processors allow enabling
and disabling of SMT mode [2, 3, 17], and prioritization
of one thread over the other [3, 17].

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
A Study of the Influence of the POWER5 Dynamic Resource Balancing
(DRB) on Optimal Hardware Thread Priorities

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Texas at El Paso,Department of Computer Science,El
Paso,TX, 79968

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Live-Virtual Constructive Conference, 12-15 Jan 2009, El Paso, TX

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The IBM POWER5 [2] implements SMT with two
hardware threads per core. To control resource contention
by the hardware threads, the POWER5 allows software to
enable and disable SMT mode and assign thread priorities
that allow prioritization of one thread over another by
increasing the proportion of decode cycles allocated to the
higher-priority thread. The broader research topic, of
which this project is a part, seeks to develop a
methodology to improve the throughput of the IBM
POWER5 processor by tuning thread priorities. In
particular, our research group is investigating the use of
application characteristics of CPU-intensive and memory-
intensive workloads to develop a model that can predict
“optimal” settings of POWER5 priorities to improve
throughput. This body of research was motivated by our
initial results [10], which show that SMT processor
throughput can be increased by using optimal priority
settings instead of the default settings. This study was
conducted by simulating application runs using traces
from the SPEC CPU2000 [5] and STREAM [6]
benchmark suites.

The POWER5 also has built-in hardware, called Dynamic
Resource Balancing (DRB) logic, to prevent one thread
from monopolizing the processor’s microarchitecture
resources; the DRB is not tunable by software. With this
knowledge, we wanted to investigate whether the results
of [10] were influenced in any way by the simulation of
the DRB logic. The research described in this paper
answers the question: For a given pair of threads is the
“optimal” pair of thread priorities dependent on whether
DRB is enabled or disabled?

To answer this question, we ran a number of simulations
on the IBM performance simulator for Linux on POWER
[4] with DRB logic enabled and disabled, and studied the
processor performance in terms of cycles per instruction
(CPI). For these simulations, we used 11 different
combinations of thread priority pairs for 394 pairs of
concurrently executing applications (hereinafter called co-
schedules). The applications used for this study were
SPEC CPU2000 [5] floating-point intensive and integer-
intensive benchmarks, as well as memory-intensive
benchmarks from the STREAM suite [6].

Our results show that

(1) the differences between the CPIs of the threads
of co-schedules, executed with DRB enabled
versus DRB disabled, was less than 1%;

(2) whether DRB is enabled or disabled,
approximately 40% of co-schedules do not
experience best performance with equal
priorities; and

(3) approximately 69% of co-schedules experienced
best performance at the same priorities with DRB
enabled and DRB disabled.

Thus, enabling or disabling of the POWER5’s DRB does
not have a significant impact on “optimal” thread
priorities for co-schedules comprised of floating-point
intensive and integer-intensive benchmarks in the SPEC
CPU 2000 suite and benchmarks in the STREAM suite.

The rest of the paper is organized as follows. Section 2
discusses related research. The broader project, of which
this study is a part, is outlined in Section 3. The
microarchitecture details of the POWER5 are described in
Section 4. The experimental methodology and the
methods used for data collection are explained in Sections
5 and 6, respectively. The simulation results are presented
and discussed in Section 7. Finally, Section 8 presents
conclusions and future work.

 2. Related Research

SMT was first introduced in a simulation of alpha binaries
developed by a group of researchers at the University of
Washington in 1995 [7]. Subsequently, SMT was
introduced in superscalar processors by Intel as Hyper-
Threading [2] and by IBM in their POWER5 and
POWER6 processors [3, 17].

Intel and IBM SMT processors allow enabling and
disabling of SMT mode. Furthermore, the IBM POWER5
and POWER6 processors allow prioritization of one
hardware thread over another by using priorities [8] to
control the ratio of allocated decode cycles for two
threads running concurrently in SMT mode.

The Linux 2.6 [15] and AIX 5L [16] operating systems for
POWER5 are SMT-aware [9]. Both operating systems
treat each hardware thread as a logical processor and
provide run queues for each thread. They also provide
SMT-aware load balancing support. AIX and Linux use
hardware thread priorities to improve kernel performance.
For example, given a co-schedule comprised of two
threads that share a lock, they lower the priority of the
thread that is busy-waiting on the spinlock, allowing a
larger allocation of processor resources to the thread that
holds the lock.

According to a study performed at the University of Texas
at El Paso [10], SMT processor throughput can be
increased by using optimal priority settings instead of the
default settings.

3. Project Goals

SMT has the potential to improve processor utilization
and, thus, overall processor throughput. However,
applications executing concurrently on hardware threads
of an SMT processor compete with each other for shared
processor resources, such as the cache memory. As a
result, concurrently executing applications may interfere
with each other’s performance. Inter-application
interference can have a considerable effect on the overall
utilization and, thus, throughput of the processor. Modern
operating systems provide specific support for thread
scheduling and resource management of SMT processors.
However, they do not alleviate performance degradation
due to inter-application interference.

The broader research is attempting to develop a
methodology to improve the throughput of the IBM
POWER5 processor by using application resource-usage
characteristics. These characteristics are used to find the
“optimal” settings of knobs on SMT processors that
improve processor throughput, e.g., hardware thread
priorities and the enabling/disabling of SMT mode. We
are studying applications that are compute-intensive and
memory-intensive; since a processor context switches on
I/O activity, we do not study I/O-intensive applications.

The methodology collects processor resource-usage
characteristics of applications running in Single-Threaded
(ST) mode, i.e., SMT mode disabled. The ST
characteristics of the two applications are used to predict
settings of hardware thread priorities, explained in Section
4, for improving the application-pair’s processor
throughput in SMT mode. In order to cover a broad range
of co-schedules, we study both homogeneous and
heterogeneous workloads. Heterogeneous co-schedules
consist of applications that stress different classes of
processor resources, whereas homogeneous co-schedules
consist of applications that stress the same classes of
processor resources. Interference and, thus, performance
of heterogeneous co-schedules is dependent on the
characteristics of the concurrently executing pair of
applications. In contrast, homogeneous co-schedules may
produce the worst case scenario for inter-application
interference and the associated SMT processor
throughput.

A thread that uses more than its fair share of processor
resources may prevent its sibling thread from making
reasonable progress and, thereby, reduce overall
throughput. To address this issue the POWER5 has DRB
logic implemented in hardware, described in Section 4,
which throttles down a thread that hogs processor
resources. The work presented in this paper investigates

the influence of the DRB on the “optimal” pair of thread
priorities for a given co-schedule.

4. IBM POWER5

The POWER5 [2] chip contains two identical processor
cores running at 1.65 GHz; each processor core supports
two logical hardware threads. Each processor core has its
own 62 KB level-one (L1) instruction cache and a 32 KB
L1 data cache. The L1 caches are shared between the two
hardware threads of each core. Both cores in the processor
share a 1.9 MB unified, in-line, level-two (L2) cache that
is fully inclusive of the L1 instruction and data caches. A
level-three (L3) cache controller (which provides for an
L3 cache directory) is located on-chip; however, the L3
cache, itself, is implemented off-chip. The L3 cache is a
36 MB victim cache, i.e., it stores data and instructions
evicted from the L2 cache; thus, the L3 cache is not
inclusive of the L2 cache. The L3 cache is shared by both
processor cores of the POWER5 chip. All hardware
threads of both processor cores access the L2 and L3
caches.

The POWER5 chip supports both SMT and Single-
Threaded (ST) execution modes. In SMT mode, there is a
program counter (PC) for each hardware thread and
instruction-fetch alternates between the two PCs. In ST
mode only one PC is used and all instructions are fetched
from that thread during every cycle. After a fetch, the
instructions are placed in separate instruction buffers for
each thread. Based on the priority setting, a certain
number of instructions of a hardware thread are fetched
from the instruction buffers, and a group is formed. All
instructions in a group belong to the same thread. All
instructions within a group are decoded in parallel and
dispatched. To simplify the logic of tracking instructions
through the pipeline, instructions are tracked as a group.
At the time of dispatch, control information for each
group of instructions is stored in a global completion table
(GCT).

In a multi-threaded system, one thread might monopolize
the processor resources and block other threads from
executing. The POWER5 implements Dynamic Resource
Balancing (DRB) logic, which helps concurrently run its
two hardware threads effectively on the system. DRB
logic monitors L2 miss queues and GCT entries; if a
thread exceeds a threshold for any of these resources, the
DRB detects this condition and throttles that thread down
so that the other thread can make forward progress. The
DRB is implemented at the hardware level and is not
tunable by software. Depending on the situation, one of
three available mechanisms is used to throttle down a

dominating thread: (1) reducing the priority of a thread
that exceeds a threshold number of GCT entries; (2)
inhibiting instruction decode of a thread that has exceeded
a threshold number of outstanding L2 cache misses; and
(3) flushing instructions from issue queues of a thread that
has long latency instructions.

Adjustable thread priorities [9] on the POWER5
processor allow software to determine the number of
decode cycles allocated to each hardware thread; the more
decode cycles, the higher the potential of having more
execution resources. Eight software-controlled priority
levels are supported for each thread in the range 0 to 7
(highest), with the higher priority thread receiving more
decode cycles. Three execution modes are supported in
the POWER5: (1) hypervisor mode, in which all priority
levels can be set; (2) supervisor mode, in which priorities
1 through 6 can be set; and (3) user mode, which is
restricted to priorities 2 through 4.

Given that the priority of thread 1 is X and that of thread 2
is Y, the share of decode cycles allocated to thread 1 is
given by equation (1); the number of cycles allocated to
thread 2 is calculated as: 1 – decode-cycles share of thread
1. The number of decode cycles associated with the
possible thread priorities are shown in Table 1. By
default, the processor assigns the priority of 4 to both
threads.

)1|(|2
1

YX
 (1)

Thread

X

Priority

Thread

Y

Priority

Priority

Difference

Thread

X

Decode

Cycles

Thread

Y

Decode

Cycles

2 7 -5 1/64 63/64
3 7 -4 1/32 31/32
4 7 -3 1/16 15/16
2 4 -2 1/8 7/8
3 4 -1 1/4 3/4
4 4 0 1/2 1/2
4 3 1 3/4 1/4
4 2 2 7/8 1/8
7 4 3 15/16 1/16
7 3 4 31/32 1/32
7 2 5 63/64 1/64

Table 1 Decode Cycles for Thread Priorities

5. Experimental Environment

The research described in this paper determines if the
optimal pair of thread priorities is dependent on whether

the DRB logic implemented on the POWER5 processor is
enabled or disabled. The DRB is implemented at the
hardware level and is not tunable by software. Therefore,
in order to study the performance of the POWER5
processor without the influence of the DRB logic, we used
an instruction trace simulator [11] for the POWER5 that
allows enabling and disabling of the DRB. Section 5.1
describes the simulator and its settings and Section 5.2
describes the workload traces studied and the
methodology used to capture the traces that were used to
drive the simulator.

5.1. Simulator

In 2005 IBM released its IBM performance simulator for
Linux on POWER [12], which is “a suite of performance
models based on IBM’s POWER series of processors.”
This tool allows users of the Linux operating system
running on a POWER processor to examine how an
application executes on various IBM POWER processor
models so that performance hazards can be identified and
prevented on such systems. The simulator requires the use
of the Linux operating system on a 64-bit IBM POWER-
based computer as well as the IBM vacpp run-time library
for Linux [13].

The IBM performance simulator for Linux on POWER
requires as input, instruction traces and produces as
output, a processor performance report with detailed
information on metrics such as CPI, functional unit usage
statistics, and instruction histograms for each thread.

The relevant command line arguments required to run the
simulator are the following:

 num_inst: the number of architected instructions
to run before exiting: set to greater than the
combined number of instructions of the two
traces

 t0_prio: priority of thread 0
 t1_prio: priority of thread 1

The trace-driven simulator is configured in SMT mode
with the desired thread priority combination. The
simulator in SMT mode exits and, thus, data collection
stops when the processing of one of the concurrently
executing traces completes. This is done because the goal
of the research is to study the effect of the DRB, which is
effective only in SMT mode.

The execution of a trace co-schedule on a single processor
of a two-processor POWER5 running the Linux 2.6.17
kernel was simulated. The simulated system has 5 GB
main memory and a 70 GB hard disk.

5.2. Workload Traces

The benchmarks used to generate the traces used in this
study are described in Sections 5.2.1 and 5.2.2, and
instruction tracing is described in Section 5.2.3.

5.2.1. SPEC CPU2000

Benchmarks in the SPEC CPU2000 [5] suite are compute-
intensive applications with working sets that fit in main
memory. The suite consists of floating-point intensive and
integer-intensive applications. Tables 2 and 3 show the
SPEC CPU2000 benchmarks that were used in this study.
5.2.2 STREAM2

The STREAM benchmark suite [6] is designed to stress
the memory subsystem. The second version of the
benchmark, called stream2, measures sustained memory
bandwidth at all levels of the memory. The benchmark
executes four vector kernels (fill, copy, daxpy, and sum)
described in [6]. During execution, the benchmark uses 32
different array sizes proceeding from the minimum size to
the maximum size via increments calculated using
Equation (2), where j ranges from 1 to 32. The amount of
work done for any vector length is equal to the maximum
array size. Our configuration of stream 2 sets the
maximum array size to 120,000,000, which is much larger
than the simulated L3 cache. The minimum array size is
the default, i.e., 30.

6028.6)*
31

1(477.1
10

j

SizeArray (2)

In our study, we use two different versions of stream2 to
generate two different traces, one that stresses the on-chip
L1 and L2 caches, and one that stresses the off-chip L3
cache and main memory. These versions are called
stream2_L2 and stream2_L3, respectively. The way that
traces are collected is described in the next section.

Benchmark Name Description

applu Parabolic / Elliptic Partial
Differential Equations

apsi Meteorology: Pollutant
Distribution

art Image Recognition / Neural
Networks

equake Seismic Wave Propagation
Simulation

fma3d Finite-element Crash
Simulation

galgel Computational Fluid
Dynamics

mesa 3-D Graphics Library
mgrid Multi-grid Solver: 3D

Potential Field
sixtrack High Energy Nuclear Physics

Accelerator Design
wupwise Physics / Quantum

Chromodynamics
Table 2 SPEC CPU2000 Floating-point Benchmarks

5.2.3 Instruction Tracing

The instruction traces used for this experiment were
collected using the Linux tool ITrace [11] on a
preliminary study performed by Meswani and Teller at the
University of Texas at El Paso [10].
The instruction traces are captured in a main memory
buffer, the size of which is limited to 200 MB per CPU. It
was experimentally determined that a ten-second time
interval is required to fill the trace buffer and capture the
largest possible trace. During this time interval, ITrace
can capture between 3 and 10 million instructions for the
benchmarks described above.

Benchmark Name Description

crafty Game Playing: Chess
gap Group Theory, Interpreter
gcc C Programming Language

Compiler
mcf Combinatorial Optimization

parser Word Processing
perlbmk PERL Programming

Language
twolf Place and Route Simulator
vortex Object-oriented Database

Table 3 SPEC CPU2000 Integer Benchmarks

6. Data Collection

The performance data presented in this paper was
collected from a simulator introduced in Section 5.1. The
application groups considered for the study are discussed
in Section 6.1. The performance metrics analyzed from
the simulation results are presented in Section 6.2.

6.1. Application Co-schedules

In order to examine the performance of the POWER5
processor for homogeneous and heterogeneous workloads,
we studied six different co-schedule groups. For
homogeneous workloads, we studied three groups: (1) co-
schedules comprised of floating-point intensive

applications; (2) co-schedules comprised of integer-
intensive applications; and (3) co-schedules comprised of
memory-intensive applications. On the other hand, for
heterogeneous workloads, we considered: (1) co-
schedules comprised of floating-point intensive and
integer-intensive applications; (2) co-schedules comprised
of floating-point intensive and memory-intensive
applications; and (3) co-schedules comprised of integer-
intensive and memory-intensive applications.

In our study, a co-schedule refers to an application pair
A,B running on hardware threads X,Y, respectively. The
hardware threads X,Y can be set at priorities (i,j),
respectively. The threads can be set at one of the
following eleven thread priority combinations: (2,4),
(2,7), (3,4), (3,7), (4,2), (4,3), (4,4), (4,7), (7,2), (7,3),
(7,4). Thus, every co-schedule can be run in 11 different
priority setting combinations. Overall, we simulated 394
co-schedules at eleven different priority setting
combinations, for a total of 4,334 experiments, once with
DRB enabled and once with DRB disabled

6.2. Performance Metric

The cycles per instruction (CPI) metric measured for each
experiment executed on the simulator for Linux on
POWER was obtained after one of the hardware threads
of a co-schedule finished execution. The formula used to
calculate the percentage difference of CPI for a co-
schedule executed with DRB enabled versus DRB
disabled is shown in Equation (3).

bledCPIDRBdisa
bledCPIDRBdisaDRBenabledCPI)(*100

 (3)

7. Results

Using the processor usage data reported by the simulation
model, we recorded the CPI for each experiment with
DRB enabled and DRB disabled. For every co-schedule
we calculated the difference in CPI between the
experiments with DRB enabled and DRB disabled. For
every co-schedule, we recorded the optimal pair of thread
priorities with DRB enabled and DRB disabled. We also
documented all cases for which the ordering of the pairs
of thread priorities did not hold for DRB enabled and
DRB disabled.

For tables and graphs in this section, we refer to the group
of co-schedules comprised of SPEC CPU2000 floating-
point intensive benchmarks as SPECFlt. The group
comprised of SPEC CPU2000 integer-intensive
benchmarks is referenced as SPECInt. The group of co-

schedules comprised of SPEC CPU2000 floating-point
intensive and integer-intensive benchmarks is referenced
as MixedPairs. For the co-schedules consisting of
STREAM memory-intensive benchmarks and SPEC
CPU2000 floating-point intensive benchmarks, the group
is called Stream_SPECFP. The group comprised of co-
schedules of the STREAM memory-intensive benchmarks
and SPEC CPU2000 integer-intensive benchmarks is
referred to as Stream_SPECINT. The last group of co-
schedules, comprised of STREAM memory-intensive
benchmarks, is referenced as Stream_Stream.

The main contribution of this study and other observations
made as a result of this study are presented in Section 7.1
and 7.2, respectively.

7.1 Main Contribution

Table 4 presents the absolute average percentage CPI
difference between experiments completed with DRB
enabled versus DRB disabled for a given application
group. As can be seen from this table, the average
percentage difference in CPI amongst all groups is less
than 1%. This shows that results from our previous study
[10] were essentially unaffected by the DRB hardware for
the set of applications and size of traces simulated. Table
4 also implies that the DRB logic does not influence the
identification of the optimal pair of thread priorities.

7.2 Other Observations

Figure 1 shows the percentage of co-schedules for a given
application group that did not experience best
performance with equal thread priorities whether DRB
was enabled or disabled. As can be seen from this graph,
approximately 42% of co-schedules across all groups did
not experience best performance at equal priorities. The
top bar of each group indicates the percentage of co-
schedules for that group that experienced the best
performance at unequal priorities when DRB was enabled.
The bottom bar shows the percentage of co-schedules that
yielded the best performance at unequal priorities when
DRB was disabled. Independent of the DRB logic being
enabled or disabled, for 42% of the experiments, the best
performance from the processor was obtained when the
thread priorities for a co-schedule were not equal.

Next, we analyze if the best priority settings for a co-
schedule changes if DRB is enabled or disabled. As
shown in Figure 2, the average percentage of co-schedules
that experienced the best performance at equal priorities
with DRB enabled and disabled across groups is 69%.

Next, we analyze if the ordering of priorities by
throughput, going from best case to worst case, for an
application pair changed if DRB was enabled or disabled.
For 78% of all co-schedules, the ordering of thread
priorities changes if DRB is enabled or disabled. In other
words, the enabling and disabling of DRB affects the
ordering of priorities for a given co-schedule. However,
we also observed that for 63% of these co-schedules, the
best case priority settings remains the same for DRB
enabled and DRB disabled. These results are shown in
Figure 3.

Our experiments show that the enabling or disabling of
DRB on the POWER5 processor does not have a
significant effect on determining the optimal pair of thread
priorities for the applications used in this study.

Group Name Average % delta in CPI

for DRB Enabled and

Disabled

SPECFlt 0.922%
SPECInt 0.696%

MixedPairs 0.950%
Stream_SPECFP 0.851%

Stream_SPECINT 0.851%
Stream_Stream 0.673%

Table 4 Average Percentage Difference in CPI for

DRB Enabled and Disabled

Figure 1. Application Pairs for which Best Thread

Priorities were not Default (4, 4)

Figure 2. Application Pairs with the Same Best Thread

Priorities with DRB Enabled or Disabled

Figure 3. Application Pairs with the Same Best Thread

Priorities but Different Orderings of Remaining

Priorities with DRB Enabled and Disabled

8. Conclusions and Future Work

The research described in this paper shows that the
enabling or disabling of the DRB logic on the POWER5
processor does not have a significant impact on
identification of optimal pairs of thread priorities for co-
schedules comprised of floating-point intensive and
integer-intensive benchmarks in the SPEC CPU2000 suite
and benchmarks in the STREAM memory-intensive suite.
The results of this work are based on application traces. If
it were possible, we would verify the results of this study
using a processor that allows the enabling and disabling of
the DRB and complete applications.

Acknowledgements

We would like to acknowledge that this work was
supported by the Spreading High Performance computing
Participation in undergraduate Education and Research
grant of the National Science Foundation and the Army
High Performance Computing Research Center
(AHPCRC) grant W11NF-07-2-2007.

9. References

[1] J. Hennessy and D. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufman, CA, 2003.
[2] R. Kalla, B. Sinahroy, and J. M. Tendler, “IBM POWER5 Chip:
a Dual-Core Multithreaded Processor,” IEEE Micro, March 2004,
24(2):40-47.
[3] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A.
Miller, and M. Upton, “Hyper-Threading Technology Architecture
and Microarchitecture,” Intel Technology Journal, February 2002,
3(1):4-15.
[4] “alphaWorks: IBM Performance Simulator for Linux on
POWER: Overview,” http://www.alphaworks.ibm.com/tech/simppc,
accessed October 30, 2008.
[5] SPEC - Standard Performance Evaluation Corporation,
http://www.spec.org/cpu2000, accessed October 30, 2008.
[6] Memory Bandwidth: Stream Benchmark Performance Results,
http://www.cs.virginia.edu/stream/, accessed October 20, 2008.
[7] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
Multithreading: Maximizing On-chip Parallelism,” Proceedings of
the 22th International Symposium on Computer Architecture (ISCA
'95), IEEE Computer Society, June 1995, pp. 392-403.
[8] H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eickemeyer,
and S. R. Kunkel, “Characterization of Simultaneous Multithreading
(SMT) Efficiency in POWER5,” IBM Journal of Research and
Development, July 2005, 49(4/5):555-564.
[9] Advanced POWER Virtualization on IBM eServer p5 Servers:
Architecture and Performance Considerations, SG245768,
http://www.redbooks.ibm.com/abstracts/sg245768.
[10] M. R. Meswani and P. J. Teller, “Evaluating the Performance
Impact of Hardware Thread Priorities in Simultaneous
Multithreaded Processors using SPEC CPU2000,” Proceedings of
the 2nd International Workshop on Operating Systems Interference
in High Performance Applications (OSIHPA), Seattle, WA,
September 2006.
[11] “ITrace for Linux/PPC,”
http://perfinsp.sourceforge.net/itrace_ppc.html, accessed October
30, 2008.
[12] “alphaWorks : IBM Performance Simulator for Linux on
Power: Overview, ” http://www.alphaworks.ibm.com/tech/simppc,
accessed October 30, 2008.
[13] “alphaWorks : IBM Performance Simulator for Linux on
Power: Download, ”
http://www.alphaworks.ibm.com/tech/simppc/download, accessed
October 30, 2008.
[14] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O'Connell, D. Q.
Nguyen, B. J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T.
Vaden, “IBM POWER6 Microarchitecture,” IBM Journal of
Research and Development, November 2007, 51(6):639-662.
[15] “The Linux Kernel Archives,” http://www.kernel.org/,
accessed October 30, 2008.
[16] “IBM Power Systems software – AIX,” http://www-
03.ibm.com/systems/power/software/aix/index.html, accessed
October 30, 2008.

http://www.alphaworks.ibm.com/tech/simppc
http://www-03.ibm.com/systems/power/software/aix/index.html
http://www-03.ibm.com/systems/power/software/aix/index.html

